4 research outputs found

    The apical ectodermal ridge: morphological aspects and signaling pathways

    Get PDF
    The Apical Ectodermal Ridge (AER) is one of the main signaling centers during limb development. It controls outgrowth and patterning in the proximo-distal axis. In the last few years a considerable amount of new data regarding the cellular and molecular mechanisms underlying AER function and structure has been obtained. In this review, we describe and discuss current knowledge of the regulatory networks which control the induction, maturation and regression of the AER, as well as the link between dorso-ventral patterning and the formation and position of the AER. Our aim is to integrate both recent and old knowledge to produce a wider picture of the AER which enhances our understanding of this relevant structure. © UBC Press.This work was supported by grant BFU2005-09309-CO2-01 from the Spanish Ministry of Education and Science.Peer Reviewe

    Initiation of proximal-distal patterning in the vertebrate limb by signals and growth

    Get PDF
    El pdf del artículo es el manuscrito de autor (PMCID: PMC3258580).-- et al.Two broad classes of models have been proposed to explain the patterning of the proximal-distal axis of the vertebrate limb (from the shoulder to the digit tips). Differentiating between them, we demonstrate that early limb mesenchyme in the chick is initially maintained in a state capable of generating all limb segments through exposure to a combination of proximal and distal signals. As the limb bud grows, the proximal limb is established through continued exposure to flank-derived signal(s), whereas the developmental program determining the medial and distal segments is initiated in domains that grow beyond proximal influence. In addition, the system we have developed, combining in vitro and in vivo culture, opens the door to a new level of analysis of patterning mechanisms in the limb.This work was supported by an NIH grant, R37HD032443, to C.T. and by BFU2008-00397, from the Spanish Ministry of Science and Innovation to M.R.Peer Reviewe

    Evidence that the limb bud ectoderm is required for survival of the underlying mesoderm

    No full text
    The limb forms from a bud of mesoderm encased in a hull of ectoderm that grows out from the flank of the embryo. Coordinated signaling between the limb mesoderm and ectoderm is critical for normal limb outgrowth and patterning. The apical ectodermal ridge (AER), found at the distal tip, is a rich source of signaling molecules and has been proposed to specify distal structures and maintain the survival of cells in the underlying distal mesoderm. The dorsal and ventral non-AER ectoderm is also a source of signaling molecules and is important for dorsal-ventral patterning of the limb bud. Here we determine if this ectoderm provides cell survival signals by surgically removing the dorsal or ventral ectoderm during early chicken limb bud development and assaying for programmed cell death. We find that, similar to the AER, removal of the dorsal or ventral non-AER ectoderm results in massive cell death in the underlying mesoderm. In addition, although a re-epithelialization occurs, we find perturbations in the timing of Shh expression and, for the case of the dorsal ectoderm removal, defects in soft tissue and skeletal development along the proximal-distal axis. Furthermore, ectoderm substitution experiments show that the survival signal produced by the dorsal limb ectoderm is specific. Thus, our results argue that the non-AER ectoderm, like the AER, provides a specific survival signal to the underlying mesoderm that is necessary for normal limb development and conclusions drawn from experiments in which the non-AER ectoderm is removed, need to take into consideration this observation. © 2013 Elsevier Inc.This work was supported by grant BFU2011-24972 from the Spanish Ministry of Science (M.R.) and by the University of Southern California (F.M.).Peer Reviewe

    Ectoderm–mesoderm crosstalk in the embryonic limb: The role of fibroblast growth factor signaling

    No full text
    In this commentary we focus on the function of FGFs during limb development and morphogenesis. Our goal is to understand, interpret and, when possible, reconcile the interesting findings and conflicting results that remain unexplained. For example, the cell death pattern observed after surgical removal of the AER versus genetic removal of the AER-Fgfs is strikingly different and the field is at an impasse with regard to an explanation. We also discuss the idea that AER function may involve signaling components in addition to the AER-FGFs and that signaling from the non-AER ectoderm may also have a significant contribution. We hope that a re-evaluation of current studies and a discussion of outstanding questions will motivate new experiments, especially considering the availability of new technologies, that will fuel further progress toward understanding the intricate ectoderm-to-mesoderm crosstalk during limb development.Grant sponsor: Spanish Ministry of Science; Grant number: BFU2014-57216-P; Grant sponsor: University of Southern California.Peer Reviewe
    corecore